3.688 \(\int \frac {\sqrt {d+e x}}{(a+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=298 \[ \frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}+\frac {d \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {d+e x}}-\frac {\sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}} \]

[Out]

x*(e*x+d)^(1/2)/a/(c*x^2+a)^(1/2)-EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1
/2)*c^(1/2)))^(1/2))*(e*x+d)^(1/2)*(c*x^2/a+1)^(1/2)/(-a)^(1/2)/c^(1/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-
a)^(1/2)+d*c^(1/2)))^(1/2)+d*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c
^(1/2)))^(1/2))*(c*x^2/a+1)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)/(-a)^(1/2)/c^(1/2)/(e*x+d)^
(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 298, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {737, 12, 844, 719, 424, 419} \[ \frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}+\frac {d \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {d+e x}}-\frac {\sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/(a + c*x^2)^(3/2),x]

[Out]

(x*Sqrt[d + e*x])/(a*Sqrt[a + c*x^2]) - (Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*
x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[
c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (d*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/
a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*S
qrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 737

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(x*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*a*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(d*(2*p + 3) + e*(m + 2*p + 3)*x)*(a + c*x^2
)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0] && (LtQ[m, 1]
|| (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\int \frac {e x}{2 \sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{a}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {e \int \frac {x}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{2 a}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx}{2 a}+\frac {d \int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{2 a}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\left (\sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (d \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {d \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.06, size = 408, normalized size = 1.37 \[ \frac {\sqrt {d+e x} \left (-\frac {e \left (a+c x^2\right )}{c (d+e x)}+\frac {\sqrt {a} \sqrt {d+e x} \sqrt {\frac {e \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{d+e x}} \sqrt {-\frac {-e x+\frac {i \sqrt {a} e}{\sqrt {c}}}{d+e x}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{\sqrt {c} \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}-\frac {i \sqrt {d+e x} \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {\frac {e \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{d+e x}} \sqrt {-\frac {-e x+\frac {i \sqrt {a} e}{\sqrt {c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{e}+x\right )}{a \sqrt {a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/(a + c*x^2)^(3/2),x]

[Out]

(Sqrt[d + e*x]*(x - (e*(a + c*x^2))/(c*(d + e*x)) - (I*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[(e*((I*Sqrt[a])/S
qrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x]*EllipticE[I*ArcSinh[Sqr
t[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/e + (Sqrt[
a]*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x
]*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d +
I*Sqrt[a]*e)])/(Sqrt[c]*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]])))/(a*Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.93, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + a} \sqrt {e x + d}}{c^{2} x^{4} + 2 \, a c x^{2} + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d)/(c^2*x^4 + 2*a*c*x^2 + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d}}{{\left (c x^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)/(c*x^2 + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.11, size = 649, normalized size = 2.18 \[ \frac {\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}\, \left (c \,e^{2} x^{2}+\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{-c d +\sqrt {-a c}\, e}}\, a \,e^{2} \EllipticE \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )-\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{-c d +\sqrt {-a c}\, e}}\, a \,e^{2} \EllipticF \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )+\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{-c d +\sqrt {-a c}\, e}}\, c \,d^{2} \EllipticE \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )+c d e x -\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{-c d +\sqrt {-a c}\, e}}\, \sqrt {-a c}\, d e \EllipticF \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )\right )}{\left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right ) a c e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x)

[Out]

(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(EllipticE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d
+(-a*c)^(1/2)*e))^(1/2))*a*e^2*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)
*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)+EllipticE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(
1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*c*d^2*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*
x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)-EllipticF((-(
e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*a*e^2*(-(e*x+d)/(-c
*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c
)^(1/2)*e)*e)^(1/2)-EllipticF((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/
2)*e))^(1/2))*d*e*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*
((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*(-a*c)^(1/2)+c*e^2*x^2+c*d*e*x)/c/e/(c*e*x^3+c*d*x^2+a*e*x+
a*d)/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d}}{{\left (c x^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(c*x^2 + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {d+e\,x}}{{\left (c\,x^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/(a + c*x^2)^(3/2),x)

[Out]

int((d + e*x)^(1/2)/(a + c*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d + e x}}{\left (a + c x^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(c*x**2+a)**(3/2),x)

[Out]

Integral(sqrt(d + e*x)/(a + c*x**2)**(3/2), x)

________________________________________________________________________________________